Serveur d'exploration Stress et Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Innate Sensing of Influenza A Virus Hemagglutinin Glycoproteins by the Host Endoplasmic Reticulum (ER) Stress Pathway Triggers a Potent Antiviral Response via ER-Associated Protein Degradation.

Identifieur interne : 000990 ( Main/Exploration ); précédent : 000989; suivant : 000991

Innate Sensing of Influenza A Virus Hemagglutinin Glycoproteins by the Host Endoplasmic Reticulum (ER) Stress Pathway Triggers a Potent Antiviral Response via ER-Associated Protein Degradation.

Auteurs : Dylan A. Frabutt [États-Unis] ; Bin Wang [République populaire de Chine] ; Sana Riaz [États-Unis] ; Richard C. Schwartz [États-Unis] ; Yong-Hui Zheng [États-Unis]

Source :

RBID : pubmed:29046440

Descripteurs français

English descriptors

Abstract

Innate immunity provides an immediate defense against infection after host cells sense danger signals from microbes. Endoplasmic reticulum (ER) stress arises from accumulation of misfolded/unfolded proteins when protein load overwhelms the ER folding capacity, which activates the unfolded protein response (UPR) to restore ER homeostasis. Here, we show that a mechanism for antiviral innate immunity is triggered after the ER stress pathway senses viral glycoproteins. When hemagglutinin (HA) glycoproteins from influenza A virus (IAV) are expressed in cells, ER stress is induced, resulting in rapid HA degradation via proteasomes. The ER-associated protein degradation (ERAD) pathway, an important UPR function for destruction of aberrant proteins, mediates HA degradation. Three class I α-mannosidases were identified to play a critical role in the degradation process, including EDEM1, EDEM2, and ERManI. HA degradation requires either ERManI enzymatic activity or EDEM1/EDEM2 enzymatic activity when ERManI is not expressed, indicating that demannosylation is a critical step for HA degradation. Silencing of EDEM1, EDEM2, and ERManI strongly increases HA expression and promotes IAV replication. Thus, the ER stress pathway senses influenza HA as "nonself" or misfolded protein and sorts HA to ERAD for degradation, resulting in inhibition of IAV replication.IMPORTANCE Viral nucleic acids are recognized as important inducers of innate antiviral immune responses that are sensed by multiple classes of sensors, but other inducers and sensors of viral innate immunity need to be identified and characterized. Here, we used IAV to investigate how host innate immunity is activated. We found that IAV HA glycoproteins induce ER stress, resulting in HA degradation via ERAD and consequent inhibition of IAV replication. In addition, we have identified three class I α-mannosidases, EDEM1, EDEM2, and ERManI, which play a critical role in initiating HA degradation. Knockdown of these proteins substantially increases HA expression and IAV replication. The enzymatic activities and joint actions of these mannosidases are required for this antiviral activity. Our results suggest that viral glycoproteins induce a strong innate antiviral response through activating the ER stress pathway during viral infection.

DOI: 10.1128/JVI.01690-17
PubMed: 29046440


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Innate Sensing of Influenza A Virus Hemagglutinin Glycoproteins by the Host Endoplasmic Reticulum (ER) Stress Pathway Triggers a Potent Antiviral Response via ER-Associated Protein Degradation.</title>
<author>
<name sortKey="Frabutt, Dylan A" sort="Frabutt, Dylan A" uniqKey="Frabutt D" first="Dylan A" last="Frabutt">Dylan A. Frabutt</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
<settlement type="city">East Lansing</settlement>
</placeName>
<orgName type="university">Université d'État du Michigan</orgName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Bin" sort="Wang, Bin" uniqKey="Wang B" first="Bin" last="Wang">Bin Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Harbin Veterinary Research Institute, CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Harbin Veterinary Research Institute, CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Riaz, Sana" sort="Riaz, Sana" uniqKey="Riaz S" first="Sana" last="Riaz">Sana Riaz</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
<settlement type="city">East Lansing</settlement>
</placeName>
<orgName type="university">Université d'État du Michigan</orgName>
</affiliation>
</author>
<author>
<name sortKey="Schwartz, Richard C" sort="Schwartz, Richard C" uniqKey="Schwartz R" first="Richard C" last="Schwartz">Richard C. Schwartz</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
<settlement type="city">East Lansing</settlement>
</placeName>
<orgName type="university">Université d'État du Michigan</orgName>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Yong Hui" sort="Zheng, Yong Hui" uniqKey="Zheng Y" first="Yong-Hui" last="Zheng">Yong-Hui Zheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Harbin Veterinary Research Institute, CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin, China zhengyo@msu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Harbin Veterinary Research Institute, CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29046440</idno>
<idno type="pmid">29046440</idno>
<idno type="doi">10.1128/JVI.01690-17</idno>
<idno type="wicri:Area/PubMed/Corpus">000300</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000300</idno>
<idno type="wicri:Area/PubMed/Curation">000299</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000299</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000265</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000265</idno>
<idno type="wicri:Area/Ncbi/Merge">000888</idno>
<idno type="wicri:Area/Ncbi/Curation">000888</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000888</idno>
<idno type="wicri:Area/Main/Merge">000991</idno>
<idno type="wicri:Area/Main/Curation">000990</idno>
<idno type="wicri:Area/Main/Exploration">000990</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Innate Sensing of Influenza A Virus Hemagglutinin Glycoproteins by the Host Endoplasmic Reticulum (ER) Stress Pathway Triggers a Potent Antiviral Response via ER-Associated Protein Degradation.</title>
<author>
<name sortKey="Frabutt, Dylan A" sort="Frabutt, Dylan A" uniqKey="Frabutt D" first="Dylan A" last="Frabutt">Dylan A. Frabutt</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
<settlement type="city">East Lansing</settlement>
</placeName>
<orgName type="university">Université d'État du Michigan</orgName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Bin" sort="Wang, Bin" uniqKey="Wang B" first="Bin" last="Wang">Bin Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Harbin Veterinary Research Institute, CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Harbin Veterinary Research Institute, CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Riaz, Sana" sort="Riaz, Sana" uniqKey="Riaz S" first="Sana" last="Riaz">Sana Riaz</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
<settlement type="city">East Lansing</settlement>
</placeName>
<orgName type="university">Université d'État du Michigan</orgName>
</affiliation>
</author>
<author>
<name sortKey="Schwartz, Richard C" sort="Schwartz, Richard C" uniqKey="Schwartz R" first="Richard C" last="Schwartz">Richard C. Schwartz</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
<settlement type="city">East Lansing</settlement>
</placeName>
<orgName type="university">Université d'État du Michigan</orgName>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Yong Hui" sort="Zheng, Yong Hui" uniqKey="Zheng Y" first="Yong-Hui" last="Zheng">Yong-Hui Zheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Harbin Veterinary Research Institute, CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin, China zhengyo@msu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Harbin Veterinary Research Institute, CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Endoplasmic Reticulum (metabolism)</term>
<term>Endoplasmic Reticulum Stress</term>
<term>Endoplasmic Reticulum-Associated Degradation</term>
<term>Glycoproteins (genetics)</term>
<term>Glycoproteins (immunology)</term>
<term>HEK293 Cells</term>
<term>Hemagglutinin Glycoproteins, Influenza Virus (chemistry)</term>
<term>Hemagglutinin Glycoproteins, Influenza Virus (immunology)</term>
<term>Hemagglutinin Glycoproteins, Influenza Virus (metabolism)</term>
<term>Humans</term>
<term>Immunity, Innate</term>
<term>Influenza A virus (chemistry)</term>
<term>Influenza A virus (immunology)</term>
<term>Membrane Proteins (metabolism)</term>
<term>Protein Folding</term>
<term>Protein Transport</term>
<term>Proteolysis</term>
<term>Virus Replication</term>
<term>alpha-Mannosidase (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cellules HEK293</term>
<term>Dégradation associée au réticulum endoplasmique</term>
<term>Glycoprotéine hémagglutinine du virus influenza ()</term>
<term>Glycoprotéine hémagglutinine du virus influenza (immunologie)</term>
<term>Glycoprotéine hémagglutinine du virus influenza (métabolisme)</term>
<term>Glycoprotéines (génétique)</term>
<term>Glycoprotéines (immunologie)</term>
<term>Humains</term>
<term>Immunité innée</term>
<term>Pliage des protéines</term>
<term>Protéines membranaires (métabolisme)</term>
<term>Protéolyse</term>
<term>Réplication virale</term>
<term>Réticulum endoplasmique (métabolisme)</term>
<term>Stress du réticulum endoplasmique</term>
<term>Transport de protéines</term>
<term>Virus de la grippe A ()</term>
<term>Virus de la grippe A (immunologie)</term>
<term>alpha-Mannosidase (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Hemagglutinin Glycoproteins, Influenza Virus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glycoproteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Glycoproteins</term>
<term>Hemagglutinin Glycoproteins, Influenza Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Influenza A virus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glycoprotéines</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Glycoprotéine hémagglutinine du virus influenza</term>
<term>Glycoprotéines</term>
<term>Virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Influenza A virus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Endoplasmic Reticulum</term>
<term>Hemagglutinin Glycoproteins, Influenza Virus</term>
<term>Membrane Proteins</term>
<term>alpha-Mannosidase</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glycoprotéine hémagglutinine du virus influenza</term>
<term>Protéines membranaires</term>
<term>Réticulum endoplasmique</term>
<term>alpha-Mannosidase</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Endoplasmic Reticulum Stress</term>
<term>Endoplasmic Reticulum-Associated Degradation</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Immunity, Innate</term>
<term>Protein Folding</term>
<term>Protein Transport</term>
<term>Proteolysis</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cellules HEK293</term>
<term>Dégradation associée au réticulum endoplasmique</term>
<term>Glycoprotéine hémagglutinine du virus influenza</term>
<term>Humains</term>
<term>Immunité innée</term>
<term>Pliage des protéines</term>
<term>Protéolyse</term>
<term>Réplication virale</term>
<term>Stress du réticulum endoplasmique</term>
<term>Transport de protéines</term>
<term>Virus de la grippe A</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Innate immunity provides an immediate defense against infection after host cells sense danger signals from microbes. Endoplasmic reticulum (ER) stress arises from accumulation of misfolded/unfolded proteins when protein load overwhelms the ER folding capacity, which activates the unfolded protein response (UPR) to restore ER homeostasis. Here, we show that a mechanism for antiviral innate immunity is triggered after the ER stress pathway senses viral glycoproteins. When hemagglutinin (HA) glycoproteins from influenza A virus (IAV) are expressed in cells, ER stress is induced, resulting in rapid HA degradation via proteasomes. The ER-associated protein degradation (ERAD) pathway, an important UPR function for destruction of aberrant proteins, mediates HA degradation. Three class I α-mannosidases were identified to play a critical role in the degradation process, including EDEM1, EDEM2, and ERManI. HA degradation requires either ERManI enzymatic activity or EDEM1/EDEM2 enzymatic activity when ERManI is not expressed, indicating that demannosylation is a critical step for HA degradation. Silencing of EDEM1, EDEM2, and ERManI strongly increases HA expression and promotes IAV replication. Thus, the ER stress pathway senses influenza HA as "nonself" or misfolded protein and sorts HA to ERAD for degradation, resulting in inhibition of IAV replication.
<b>IMPORTANCE</b>
Viral nucleic acids are recognized as important inducers of innate antiviral immune responses that are sensed by multiple classes of sensors, but other inducers and sensors of viral innate immunity need to be identified and characterized. Here, we used IAV to investigate how host innate immunity is activated. We found that IAV HA glycoproteins induce ER stress, resulting in HA degradation via ERAD and consequent inhibition of IAV replication. In addition, we have identified three class I α-mannosidases, EDEM1, EDEM2, and ERManI, which play a critical role in initiating HA degradation. Knockdown of these proteins substantially increases HA expression and IAV replication. The enzymatic activities and joint actions of these mannosidases are required for this antiviral activity. Our results suggest that viral glycoproteins induce a strong innate antiviral response through activating the ER stress pathway during viral infection.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
<settlement>
<li>East Lansing</li>
</settlement>
<orgName>
<li>Université d'État du Michigan</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Frabutt, Dylan A" sort="Frabutt, Dylan A" uniqKey="Frabutt D" first="Dylan A" last="Frabutt">Dylan A. Frabutt</name>
</region>
<name sortKey="Riaz, Sana" sort="Riaz, Sana" uniqKey="Riaz S" first="Sana" last="Riaz">Sana Riaz</name>
<name sortKey="Schwartz, Richard C" sort="Schwartz, Richard C" uniqKey="Schwartz R" first="Richard C" last="Schwartz">Richard C. Schwartz</name>
<name sortKey="Zheng, Yong Hui" sort="Zheng, Yong Hui" uniqKey="Zheng Y" first="Yong-Hui" last="Zheng">Yong-Hui Zheng</name>
</country>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Wang, Bin" sort="Wang, Bin" uniqKey="Wang B" first="Bin" last="Wang">Bin Wang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/StressCovidV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000990 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000990 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    StressCovidV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29046440
   |texte=   Innate Sensing of Influenza A Virus Hemagglutinin Glycoproteins by the Host Endoplasmic Reticulum (ER) Stress Pathway Triggers a Potent Antiviral Response via ER-Associated Protein Degradation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29046440" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a StressCovidV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed May 6 16:44:09 2020. Site generation: Sun Mar 28 08:26:57 2021